Yale Bulletin and Calendar

October 27, 2006|Volume 35, Number 8


BULLETIN HOME

VISITING ON CAMPUS

CALENDAR OF EVENTS

IN THE NEWS

BULLETIN BOARD

CLASSIFIED ADS


SEARCH ARCHIVES

DEADLINES

DOWNLOAD FORMS

BULLETIN STAFF


PUBLIC AFFAIRS HOME

NEWS RELEASES

E-MAIL US


YALE HOME PAGE


This image -- which depicts a single molecule connecting two electrodes -- illustrates some of the nanoscience research by Yale electrical engineer Professor Mark Reed and his colleagues.



Yale expanding nanoscience,
quantum engineering focus

The University has established the Yale Institute for Nanoscience and Quantum Engineering, which will unite and expand Yale's existing efforts in this rapidly developing science and technological frontier.

An initial investment of $5.5 million will bolster the institute's infrastructure and initiate seed projects, adding to the more than $100 million of funding already focused on these areas of investigation at Yale. The initiative is a part of Yale's commitment of over $1 billion to research infrastructure and science and engineering programs in the coming decade.

The institute will unite and strengthen six existing areas of excellence at Yale including molecular electronics, quantum information processing, chemistry of soft materials, nanoparticles, photonics and nanoscale biomedical engineering. Unification of key facilities and the addition of new core facilities will maximize the collaboration between areas and accelerate interdisciplinary research and education.

The creation of bridging research programs that link current programs will be given the highest priority. Focus areas for this collaboration will include biomaterials and bioengineering, nanoparticles and quantum dots, nanoelectronics and photonics, and quantum information processing. To accomplish these many goals, centralized characterization facilities will be fitted with state-of-the-art equipment.

"Yale scientists are developing significant new insights and applications through unprecedented cross-disciplinary collaboration," said President Richard C. Levin. "The Yale Institute for Nanoscience and Quantum Engineering is designed to further the integration of the disciplines to benefit both faculty research and student understanding of nanoscale physical principles."

The institute will provide a new mechanism for interdisciplinary faculty hiring and interaction while building on existing strengths and collaborations in engineering, physics and chemistry. Sixty faculty members across 10 departments will form the initial intellectual base and will serve to provide expertise as more faculty are progressively drawn into this new area.

According to Paul Fleury, dean of Yale Engineering, "An important path to the future begins at the intersection of biotechnology and quantum science. We seek to understand and control how materials and devices can be assembled and how their functions can be programmed from the atoms up."

Already, Yale's biomedical and materials scientists are devising targeted smart nanoparticles that will seek out and destroy individual cancer cells while bypassing healthy ones. They have also developed nanoscale biodegradable scaffolds to allow rejection-free regeneration of new tissues and organs from a patient's own seed cells.

Yale's quantum engineers and physicists have fabricated "artificial atoms" from superconducting circuits that offer a promising path toward quantum computing and the next generation of computers. Other areas where Yale nanoscience and quantum engineering research has begun to have an impact include new nanoscale electronic devices for medical diagnostics, photonic devices for communications and better catalysts for sustainable energy applications.

Provost Andrew Hamilton said: "The institute will provide exciting opportunities for teaching and research outside the boundaries of traditional fields of study. It will serve as a catalyst for partnerships with government, industry and the community. This initiative is intended to strengthen Yale's place among the world leaders in nanoscience and quantum computing, providing a clear avenue for both understanding nature and evolving new science, new tools, and new ways to improve the world."


Nanoscience and quantum engineering: A primer

Nanoscience refers to the investigation and use of processes and devices involving dimensions in the range of less than 100 nanometers (a nanometer is one-billionth of a meter). It encompasses studies where the disciplines of physics, chemistry and biology meet and allow the intentional arrangement of atoms.

The processes involved include "bottom-up" atom-by-atom synthesis of materials as well as the creation of new materials by "top-down" atom-by-atom removal. Historically, nanosciences are as old as the making of "rose glass" in the 4th century B.C. -- where nanoparticulate gold was incorporated into the glassmaking process to achieve its unique and distinctive character.

Quantum engineering encompasses design processes and the physical science of engineering on the scale of atoms and subatomic particles. Quantum mechanics forms the basis for the contemporary understanding of the physical behavior of systems, including systems where traditional Newtonian mechanics fails. It has been the basis for many of the technological advances of the last 60 years including semiconductor lasers, which are used in everything from DVD players to fiber-optic telephone lines.


T H I SW E E K ' SS T O R I E S

With 31 winners, Yale has most Fulbright recipients this year

Grants to support research on adolescent parents and HIV/STI

Joint Yale-Chile astronomy program has been renewed

Divinity School exhibit shows human impact of Iraq war

Three Divinity School faculty members appointed to endowed posts

Scientist's molecular research yields clues about herbal therapies

V.P. Shauna King announces changes in Office of Finance and Administration

Using writing as a creative outlet brings benefits to medical residents

Nobel laureate to discuss the threat of nuclear proliferatio

Yale's Witt will help coach U.S. team at Four Nations Cup

Stomach hormone activates region of brain that controls reward . . .

Study by School of Medicine researchers shows low levels of oxygen . . .

Study shows genes and life stress interact in the brain

New concert series will offer fresh look at chamber music

Yale Cancer Center and YNHH offer free programs on cancer treatmen

Medical school and hospital honored for rapid response team in pediatric

Memorial service for Dr. Paul Beeson

U.N. official's talk rescheduled

Images of Autumn

Yale Books in Brief

Campus Notes


Bulletin Home|Visiting on Campus|Calendar of Events|In the News

Bulletin Board|Classified Ads|Search Archives|Deadlines

Bulletin Staff|Public Affairs|News Releases| E-Mail Us|Yale Home