Yale Bulletin and Calendar

April 11, 2008|Volume 36, Number 25


BULLETIN HOME

VISITING ON CAMPUS

CALENDAR OF EVENTS

IN THE NEWS

BULLETIN BOARD

CLASSIFIED ADS


SEARCH ARCHIVES

DEADLINES

DOWNLOAD FORMS

BULLETIN STAFF


PUBLIC AFFAIRS HOME

NEWS RELEASES

E-MAIL US


YALE HOME PAGE


Study shows rare genes have
big impact on blood pressure

Yale researchers have discovered that rare genetic variants can be associated with a dramatically lower risk of developing high blood pressure in the general population.

The study was published in the April 6 issue of the journal Nature Genetics.
The insight that rare mutations may collectively play a large part in the development of common yet complex diseases such as hypertension also has implications for the diagnosis and treatment of diseases such as diabetes and schizophrenia.

The team of researchers was led by Richard Lifton, chair of the Department of Genetics and Sterling Professor of Genetics and Internal Medicine at Yale, and Daniel Levy, director of the National Heart, Lung and Blood Institute’s Framingham Heart Study.

The scientists analyzed DNA samples from 3,125 people who participated in the Framingham Heart Study, a long-running epidemiology survey that has led to a treasure trove of information about the causes of heart disease.

They decided to study the health impact of three genes regulating the processing of salt in the kidney — each of which is known to cause dangerously low blood pressure levels when inherited with two defective copies (one from each parent). The researchers speculated that people who carry only one defective copy might be less prone to hypertension.

Lifton’s group found that 2% of the subjects carried one defective copy of one of the three genes. These individuals in general had lower blood pressure and a 60% lower risk of developing hypertension by the time they were 60 than the general population.

A major question in the field of many chronic diseases has been whether the risk of developing a disease is more closely linked to common or rare mutations. Recent studies have shown that for many diseases, common genetic variants can only explain a small fraction of an individual’s risk of developing a particular condition. In the case of high blood pressure, for instance, large genome-wide studies have thus far found no common variants that are associated with the risk of developing hypertension.

So, scientists like Lifton and his lab members Weizhen Ji and Jia Nee Foo have begun to search for the many rare mutations that might have a larger impact on the risk of inherited diseases on smaller groups of ­people.

“Collectively, common variants have explained a small fraction of the risk of most diseases in the population, as we would expect from the effects of natural selection,” Lifton says. “The question this leaves open is whether many rare variations in genes will collectively account for a large influence on common disease.”

Lifton said the new study underscores the importance of sequencing the genome of many individuals in order to discover disease-causing mutations.
For instance, previous genetic studies of hundreds of families with severely low blood pressure enabled his team to identify the gene mutations used in the study. And one of the genes, ROMK, has turned out to be a particularly promising target for new high blood pressure therapy.

Eventually, scientists may find dozens of genes in which rare mutations individually account for a low percentage of common diseases among individuals, but may collectively account for the burden of common chronic diseases, Lifton says.

Added Levy, “We may have to march down the field from gene to gene to identify other genes where rare variants are contributing to blood pressure variations.”

By Bill Hathaway


T H I SW E E K ' SS T O R I E S

Study shows rare genes have big impact on blood pressure

Yale volunteers once again to lend a helping hand to city non-profits

Studies suggest women, but not men, lose status in . . .

Branching out

Info still pending on gathering of governors

Scientists’ crystal structure provides view of RNA splicing mechanism

State grants will advance stem cell research by Yale scientists, center

Scott Strobel wins prestigious award for his multidisciplinary . . .

Scientists link asthma to a mutation in the gene that also . . .

'Lift Every Voice and Sing'

Librarian of Congress to open new exhibition on medical inventions

Researchers’ study sheds light on the effect of random . . .

Michael Gasper named a Carnegie Scholar for his examination of . . .

Yale Opera’s production rife with deception, mystery

Visitors to Peabody Museum can learn fun facts via new audio tours

Composer Claudio Monteverdi’s works focus of concerts, conference

Exhibit features drawings and remarks from Tanner Lectures

New business trends in biopharmaceutical industry to be . .

Jazz concert celebrates the life of Stanton Wheeler

Campus Notes


Bulletin Home|Visiting on Campus|Calendar of Events|In the News

Bulletin Board|Classified Ads|Search Archives|Deadlines

Bulletin Staff|Public Affairs|News Releases| E-Mail Us|Yale Home