Yale Bulletin and Calendar

July 15, 2005|Volume 33, Number 31|Six-Week Issue


BULLETIN HOME

VISITING ON CAMPUS

CALENDAR OF EVENTS

IN THE NEWS

BULLETIN BOARD

CLASSIFIED ADS


SEARCH ARCHIVES

DEADLINES

DOWNLOAD FORMS

BULLETIN STAFF


PUBLIC AFFAIRS HOME

NEWS RELEASES

E-MAIL US


YALE HOME PAGE


Team seeking 'perfume' to control malaria-carrying mosquitoes

A five-year, $8.5 million dollar research project designed to substantially reduce the spread of malaria by redirecting mosquitoes with odor cues is being launched by an international team of scientists including John Carlson, the Eugene Higgins Professor of Molecular, Cellular and Developmental Biology at Yale.

The project is one of the 43 "groundbreaking" research projects to improve health in developing countries that are being supported by a total of $436 million in grants from the Foundation for the National Institutes of Health through the Grand Challenges in Global Health initiative.

Carlson, will work on a project with scientists at Vanderbilt University (which will administer the award), Wageningen University in the Netherlands, Ifakara Health Research and Development Centre in Tanzania and the Medical Research Council Laboratories in Gambia, Africa.

Each year hundreds of millions of people are infected with malaria -- and hundreds of thousands die. Female malaria mosquitoes "smell" with specialized receptors in their antennae and are drawn to particular human odors. After biting, while the mosquito feeds on blood that is needed for its egg production, parasites from the mosquito enter and infect the human. When an infected person is bitten again, the parasite can be transmitted to an uninfected mosquito and spread further.

The specific aim of the project is to reduce the population of malaria-transmitting mosquitoes by identifying effective "perfumes" that can act as attractants (luring them into traps) or as repellents. Scientists at Yale and Vanderbilt will identify odors that act on mosquito receptors and create the "perfumes," and the Dutch researchers will study the mosquito behaviors that the odors elicit. Odorant blends giving the strongest reaction (attracting, repelling or causing confusion) will then be tested in a simulated natural situation in Ifakara, Tanzania. Finally, the ideal blend of odors will be sent to African villages in Gambia and Tanzania for full-scale, practical tests in different geographical extremes and mosquito populations.

The scientists hope that the finalized products will keep malarial mosquitoes from infecting humans and will be inexpensive, safe for humans, livestock and crops, and easy to use in rural locations. They also expect that the products may also be used against other pathogenic mosquitoes, such as Aedes aegypti, which spreads dengue fever, and Culex pipiens, carrier of the West Nile virus.

The search for compounds affecting mosquito olfaction will initially be carried out in a system, developed in Carlson's laboratory, in which the mosquito receptors are made in the antenna of genetically engineered fruit flies, Drosophila, that can be studied much more easily than the mosquito itself. In research published last year in Nature, Carlson and graduate student Elissa Hallem used the system to show that one particular mosquito odor receptor responds strongly to a component of human sweat. Such receptors will now be tested with a large collection of other compounds to identify molecules useful as attractants or repellents.

The project is based largely on earlier work carried out by the Carlson laboratory that identified the first insect odor receptors, using a novel computer algorithm, as well as the first insect taste receptors. Last year, in a study published in the journal Cell, Hallem and Carlson established a comprehensive receptor-to-neuron map of the fly's antenna.

In two studies published earlier this year in Neuron, the laboratory reported major work on the mechanism of olfaction. The first showed that two functional odor receptors can be co-expressed in one neuron, a breach of one of the most central tenets in the field of olfaction. The second identified the molecular basis of odor coding in the insect's larval stage. Much of the research was done by graduate students in Carlson's laboratory, five of whom have won awards for their Ph.D. theses in the past six years.


T H I SW E E K ' SS T O R I E S

Yale launches program to train urban teachers

New alumni fellow elected

Sensors won't save lives from suicide bombers, warns Yale expert

Study: Monkeys ape humans' economic traits

Richard Shaw departs for Stanford post

Tennis goes co-ed at this year's Pilot Pen

Yale co-sponsors 'City of Summer' concerts and films

Exhibit features post-Civil War works by 'artful storyteller'

Yale alumni, teachers win Tony Awards

ENDOWED PROFESSORSHIPS

Law School project exploring the information society . . .

Poll shows public's distaste with foreign oil dependence

Scientists discover how plants protect themselves from infection

Team seeking 'perfume' to control malaria-carrying mosquitoes

Geologists use ancient sea algae to trace CO2 levels of long ago

Study shows how sex discrimination in job hiring is able to endure

YSN study shows effectiveness of preschool health screenings

SCHOOL OF MEDICINE NEWS

Spotlight on Sports

Athletics archive now in library's collection

Three promoted to post of associate provost

Event to explore role of faith in the corporate world

In Memoriam: Dick Wittink, marketing expert and SOM teacher

Five faculty members awarded Guggenheim Fellowships for research

Event explored how libraries can benefit city schools

New alumni lauded for efforts to improve public schools

Yale Books in Brief

Campus Notes


Bulletin Home|Visiting on Campus|Calendar of Events|In the News

Bulletin Board|Classified Ads|Search Archives|Deadlines

Bulletin Staff|Public Affairs|News Releases| E-Mail Us|Yale Home